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Abstract-In this paper the use of the boundary integral equation method (BIEM) for multidimensional 
problems with a moving phase-change interface is explored. The method is shown to be suited to heat 
!ransfer problems where the field equations are linear in each region and the boundary or interface matching 
conditions are both highly irregular and non-linear. For moving interface problems the BIE technique both 
reduces the dimensions of the problem by one, thus decreasing storage requirements, and directly solves for 
the unknown normal temperature gradient on each side of the interface for the determination of the 
instantaneous interface velocity. To illustrate the versatility of this technique the BIEM is applied to a 
previously unsolved problem: the melting/freezing around a pipe buried in a semi-infinite domain where the 
melting/freezing is initiated at the free surface and the medium is initially not at the phase-change temperature. 
For simplicity quasi-steady heat conduction is assumed in both the thawed and frozen zones. 

Solutions are presented for various values of the governing parameters. 

INTRODUCTION 

EXISTING numerical solutions of two-dimensional 
heat conduction problems with a moving phase- 
change interface have traditionally been treated using 
finite-difference or finite-element methods. These 
techniques are very time consuming, even with the 
latest generation of computers, since they require a 
coupling of the solution for the entire temperature field 
in the liquid and solid regions with a non-linear energy 
interface condition at each time increment. The 
extension of these techniques to three-dimensional 
problems or problems with embedded fluid-carrying 
tubes, coupling the heat transfer between the internal 
fluid and the surrounding phase-change medium, 
would be extremely costly. In the present paper a new 
numerical solution procedure is examined for moving 
phasechange boundary problems in heat transfer 
based on the boundary integral equation technique. 
The method has been extensively used in the mechan- 
ics of solids where one wishes to determine the quasi- 
steady stress distribution in the vicinity of a fracture tip 
[l-3] and more recently in low Reynolds number flow 
problems with deformable fluid-fluid interfaces [4-6]. 
The present paper will demonstrate the feasibility of 
the technique for heat transfer problems in two- 
dimensions where a quasi-steady approximation is 
assumed for the temperature distribution in both the 
liquid and solid regions. The method iscurrently being 
extended to three-dimensional problems involving 
buried tubes with axial thermal interaction and fully 
transient problems using a time-dependent Green’s 
function. 

The two fundamental simplifying features of the 
boundary integral equation approach that make it 
especially attractive for heat transfer problems with a 

moving phase-change interface are: (1) the number of 
dimensions over which an unknown temperature or its 
normal gradient must be determined are reduced by 
one since these unknown distributions need be 
determined only over the boundaries of each region 
instead of the areas; and (2) the numerical solution 
procedure directly provides the unknown normal 
temperature gradient on each side of the moving 
interface. This second feature is extremely convenient 
in the present heat transfer application since the 
energy interface condition for the instantaneous 
velocity of the interface involves only the difference in 
the normal temperature gradients across this surface. 
The theory for the boundary integral equation 
approach derives from the conditions of uniqueness 
for the governing field equations in each region. The 
solution procedure can be easily applied provided 
these field equations are linear and possess a relatively 
simple closed-form fundamental solution which 
satisfies appropriate boundedness conditions at 
infinity. Subject to additional constraints of boundary 
smoothness, these conditions are normally satisfied 
for both two- and three-dimensional, steady and 
unsteady heat conduction problems. The new solution 
approach will be illustrated for the classic problem ofa 
buried pipe in a semi-infinite domain where the 
freezing/melting is initiated at the planar free surface. 
This problem has been selected since its solution has 
not previously appeared in the literature and the 
dramatic changes in interface shape that evolve as the 
phase-change boundary gradually wraps around the 
tube provide a severe test of the flexibility of the 
solution methodology for handling interfaces of highly 
irregular shape. 

While the boundary integral equation technique has 
been extensively used in solid mechanics and flow 
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NOMENCLATURE 

b depth of bypass contour Greek symbols 

D domain tL angle between normal and x-axis 

aD, part of boundary where 0 is defined Y dimensionless coordinate of an 

dD2 part of boundary where atI@ is element 

defined V2 Laplacian operator 

ii;;’ function of boundary values at x’ 6 delta function 

function of boundary values at 2 E infinitesimal radius of sphere 

flYf2 values off at the two nodes of& il>iZ interpolation functions 

element ‘I coordinate of 5 

G the Green’s function Rx) dimensionless iemperature function 

g(x’) function of boundary values at x’ of x 

s(k) function of boundary values at 2 0,(x) ditiensionless temperature function of 

91-42 values of g at the two nodes of an 
I 

the free surface 

element moving boundary point (5, q) 

H coefficient matrix of f -: coordinate of 5 
h depth of the center of the pipe P mass density - 

K thermal conductivity 7 dimensionless time 
k coefficient matrix of g 70 dimensionless time required for the 

1 latent heat interface to intersect the Y-axis 

n(x) outward unit normal at x 7s dimensionless time required for the 

N- total number of elements interface to reach 90% of its steady- 

rij distance between the centerpoints of state position above the pipe 

the ith and jth elements R region of solid or liquid 
r(x, 5) distance between the two points x an boundary of the solid or liquid region 

1 - 
and 5 aQ, boundary of the interface. 

R pipe-radius Superscripts 
S coordinate along the boundary * dimensionless 
AS length of the boundary element boundary points. 
T temperature Subscripts 

T, free surface temperature S solid 

?; pipe temperature L liquid 
t time coordinates of the points 

% normal interface velocity i ith boundary element or initial 

X,Y Cartesian coordinates condition 
X coordinates of a point (x, y). _ j jth boundary element. 

problems [7,8], these applications for the most part 
have been either steady or quasi-steady in nature 
where one wishes to determine an unknown quasi- 
steady stress or velocity distribution at the boundaries. 
In the present situation the solution is required of a 
non-linear, time-dependent initial value problem in 
which only the energy matching condition between 
regions is non-linear. This type of problem is much 
easier to treat than a moving boundary value problem 
in which the governing field equations are non-linear. 
Even with this simplification the success of the method 
is limited by the rapidity with which the unknown 
boundary functions can be evaluated in each time 
interval. For interfaces undergoing large amplitude 
deformations, as is the present case, the temporal 
evolvement of the interface may involve a thousand or 
more time increments. The time-dependent 

applications of the boundary integral equation 
technique, which first attracted the authors’ attention 

and suggested the feasibility of this approach for heat 
transfer applications, were the recent numerical 
studies of Lee and Lea1 [S, 61 for the motion of a solid 
sphere through a deformable fluid-fluid interface. This 
application from the chemical engineering literature 
exhibited several of the same essential features of the 
class of heat transfer problems considered herein: 
linear field equations in each region, a non-linear 
matching interface condition and a large amplitude 
deformation of this interface as time evolves. 

HEAT TRANSFER BACKGROUND 

Investigators studying the transient behavior of 
phase-change material (PCM) outside an embedded 
circular tube have commonly simplified the problem 
by assuming the PCM to be infinite in extent. With 
this approximation the problem becomes one- 
dimensional and its mathematical treatment is 
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FIG. 1. Schematic of freezing around a buried pipe. 

considerably simplified. An important exception 
where a bounded domain is treated is a tube buried in 
the vicinity of a planar boundary as shown in Fig. 1. 
The presence of the planar surface results in a two- 
dimensional solid-liquid interface motion. Two 
different cases are identi~ed with this geometry. In the 
first case the interface commences at the planar surface 
due to a sudden change in surface conditions and 
progresses inwards through the PCM while in the 
second case the interface begins at the pipe surface due 
to a change in pipe inlet conditions and moves 
outwards. Thus the initial shape of the interface for the 
first case is planar while that for the second is 
cylindrical. Because of the non-linearity of the 
interface energy equation these two initial value 
problems are mathematically distinct, having two 
different solutions. However, they share a common 
well-known steady-state solution characterized by a 

circular interface [9] which is eccentrically located 
about the pipe. To our knowledge the first case, which 
finds applications in solar collectors, ground freezing 
and cryoprobe skin treatment in the vicinity ofa major 
blood vessel, has not been treated in the published 
literature. However, Lunardini [lo] recently 
addressed this case and presented an approximate 
analytic model for the initiat stages of this problem. 
Applications to buried gas and oil pipes in permafrost 
have generated considerable interest in the second 
case. Of importance here is the determination of the 
outward advance of the thaw front around a warm 
pipe. Numerical solutions based on variational and 
finite-element methods to the problem of transient, 
two-dimensional melting outside a buried pipe at 
uniform surface temperature have been obtained for 
various planar surface boundary conditions by 
Lachenbruch [Ill], Gold et af. [12], Wheeler [t3] and 
Hwang [14]. Because these solutions are expensive to 
generate, several investigators have obtained various 
approximate analytic solutions to both insulated and 
bare buried pipes [15-231. Without exception, all 
these two-dimensional analytic solutions are based on 
a simplified quasi-steady approximation in which the 
transient term in the heat conduction equation is 
neglected in both phases. This is a valid 
approximation when the latent heat of the PCM is 
large compared to the sensible heat (i.e. small Stefan 
number). 

In this paper we examine the first case where the 
interface commences at the planar surface. The semi- 
intinite PCM is assumed to be initially at uniform 

temperature q which is above its melting temperature 
Tr. The planar surface temperature of the PCM is 
suddenly changed to T, where TO < 7; < 7;. A tube of 
radius R and surface temperature I; is buried a 
distance h below the planar surface. 

Mathe~t~ca~ ~orrnul~t~on 
In the problem described above and illustrated in 

Fig. 1 the solid domain is defined by R, with its 
boundaries described by aR, (free surface) and 80, 
(interface). The liquid domain is defined by fit+ with its 
boundaries described by X&, (pipe surface) and %I,. 
The governing differential equation for quasi-steady 
two-dimensional conduction are 

V”?;@) = 0) vx E 8, (la) 

VT,(x) = 0, VXEq_ (lb) % 
where jr, and TL are the temperatures of the solid and 
liquid regions respectively, Vz is the Laplacian 
operator and x = (x, y). The boundary conditions are 

T,(x’, t) = To ( Vx’ E al, _ 

T,(x’, t) = 7;, Vx’ E xl, _ 
and 

T&Y’, t) = I;, Vx’ E a& 

T,(_x’, t) = q, Vx’ E ix&+ I 

The energy balance at the interface requires 

@a) 

(2b) 

Oaf 

W) 

am7 KC4 
K,--------&- 

an,($) anL(_x’) 
= plv,@‘), V_x’ E an, (4) 

where n(Y) is the outward normal coordinate at the 
interface; K, and K, are the thermal conductivity of 
solid and liquid, respectively, p is the mass density, I is 
the latent heat and V&X’) = dn(x’)/dt is the interface 
velocity of x’ in the normal dir&ion. 

To non-dimensionalize the problem the following 
dimensionless variables are introduced: 

(5) 

where t is time and z is the dimensionless time. 
The dimensionless form of the governing equations, 

the boundary conditions and the energy balance at the 
interface are: 

V%,(x) = 0) vx E i-2, w I 
W,(x) = 0, vx E Q2, 

8, = 8, on dfl, 

(3, = 0 on iX& 

(94 

(9b) 

( lOa) 

C lObI 
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and 

tlL = 0 on L:Q, (lla) 

eL = 1 on XI, (1 lb) 

de,(d) a&(x’) dn:(x’) ---= -, X’Er-n, 
&I:(:‘) &I@‘) dz - 

(12) 

where B. = I&(‘& - T,)/K,( 7;- ‘Q. 
The governing equations and boundary conditions 

show that the physical problem just described is 

completely defined by only two dimensionless groups 
if the sensible heat of the liquid and solid phases are 

neglected compared to the heat of fusion: a geometric 
parameter h* = h/R and a temperature ratio Qo. We 
wish to examine the behavior of the interface as these 
two parameters are varied. 

THE BOUNDARY INTEGRAL EQUATION 

For a general, two- or three-dimensional problem, 
let u(x) be the solution of the harmonic equation 

V%(x)=O, _XED (13) 

subject to the boundary conditions 

0(x’) = f(x’), t/x’ E dD, (14) 

aqx’) 
- = d_x’), an(x’) 

Vx’ E dD, (15) _ 

where f and g are specified boundary values and 
dD = aD, +aD,. Let G(x, 5) be the Green’s function, 
i.e. the solution of V’GG,t) = 6(x -5) where 6 is the 
delta function. Employing ihe Gre&‘ssecond identity, 
which is 

s CQ)V2G(~, $I- G(_x, _5F2Q(_x)l dD 
D 

FIG. 2. Alternative path when x’ = 5. 
_ . 

(18) becomes 

tf(x')+ G@‘> _5)s(<) W_5) 

WC’, 5) = f’(5) - 
- an(<) 

dS(_S). (19) 
. 

Depending upon the first or the second boundary 

condition, (19) becomes the standard Fredholm 
equation of the first or the second kind, respectively. 
Once f and g at any point are known, the solution at 
any point in the domain will be obtained from 

equation (17). For the two-dimensional problem 
considered here, the Green’s function is G(x’, 5) 
= (l/271) In r(x’, [), where r denotes the distance bf 
point x’ from-the point 5. Therefore, as 5 approaches 
x’, thkintegral on the CHS of (19) becomes singular. 
To avoid the singularity we make the assumption that 
g(t) is constant over a small interval AS of the 
boundary and integrate over the path shown in Fig. 3. 
Taking the limit as b approaches zero, equation (19) 
can be written as: 

g(t) In 4x’, s’) dS(5) 
- - - - _ . 

dG(x, 5) W) = q) - 
a$) 

-G(_x,<)i?n(4) dS(<) (16) 
_I 

one can readily arrive at 

-g(_S)G(x, 5) dS($). (17) 
- _ 1 

Let x approach a boundary point x’, then equation 

(17) becomes 

f(_x') = s f(S) ?D 
w dS(<) 

- s d_5F($_5) dS(J). (18) 
iD 

As [ approaches x’, the first integral on the LHS of 
equation (18) b&omes singular. However, this 
singularity is avoided by following a different path 
such as a small spherical region of radius E about the 
singular point, i.e. x’ = 5, Fig. 2. Taking the limit as 
E + 0, the integral exhibiis a jump off (x’)/2. Equation 

- ‘5 sin a(<) dS(<) 1 (20) 

x 

FIG. 3. The integration contour. 
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where x’ = (x, y), r = (5, v), r2 = (x-5)‘+ (y-q)’ 
and u(t) is the angle-between the outwardnormal and 

x axis-at the boundary point. 
To obtain a numerical solution to (20) we subdivide 

the boundary dD into N + 1 nodes and N discrete 
intervals, boundary elements, ASi (i = 1,. , N). The 
intervals can be considered as constant, linear, 
quadratic or higher-order boundary elements. Clearly 
the shape function will be different for each type of 
element. For a constant element, f(x’) and g(x’) are 
constant over each interval and can be taken out of the 
integrals. Therefore, equation (20) leads to 

&giASi(ln~$l-l)+&~l [jAS,lnrijdSi]gj 

j+i 

1 N 
= -4Afg ,z 

J-1 j#i 

_ 

(Xi-Xj)(Xj-Xj+l)+(Yi-~~j)(Yj+l -Yj) ds, 

r2ASj I 

1 

f, 

I’ 

(21) 

In the above equation the subscripts i and j represent 
the value at the mid-point of the intervals and (Xi, yi) 
and (xj, yj) denote the coordinates of the points x’ and 

<, respectively. 
For a linear boundary element the values of f(x’) 

and .q(x’) at any point on the element can be defined-in 
terms - of their nodal values and two linear 

interpolation functions ii and c2 

f(r) = ii fi fi2f2 

g(Y) = 1191 +i*g2 

where fi, g1 and f2, g2 are the boundary values of two 
nodes of an element, dimensionless coordinate y is 
equal to x’/(AS/2), AS is the length of the element and 
the ii, [; functions are given by 

ii =$1-y), i* =f(l+y). 

Therefore each integral of equation (20) will have two 
parts associated with the interpolation functions ii 

and c2. In either case (20) and/or (2 1) can be written in 
the following matrix form 

CKijl{Si} = CHijl{.Lf = IFi} (22) 

where [Kij] is an N x N matrix whose elements 
contain the boundary integral of the Green’s function, 
{gi} is an N x 1 vector whose elements contain the 
unknown normal derivative of the dimensionless 
temperature H/an, [Hij] is an N x N matrix whose 
elements contain the coefficient of dimensionless 

temperature and {h} is an N x 1 vector whose elements 
contain the known value of the dimensionless 

temperature. The RHS is known and is denoted by 
{F,]. Once equation (22) is solved for the vector {gi}, 
the temperature at any point in the domain x = (x, y) 
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is given by 

- 

(x-5i)(~i-5i+l)+(Y-)li)(llj+1-~j) dS, 

r’(x, 5Wi 11 

In r(x, 5i) dSi gi ] (23) 

where si = (ci, vi) is a boundary point at subdivision i. 
In order to determine the velocity and the position of 
the interface, equation (22) is first solved for the solid 
and liquid regions shown in Fig. 1. The energy 
equation (12) is then used to determine n* which leads 
to the determination of the velocity and the position of 
the interface. The traveling direction and the direction 

of the outward unit normal n* on the boundaries of the 
solid and liquid regions are defined in Fig. 4. As shown 

in Fig. 4 the outward unit normals at the interface of 
the two regions are in opposite directions, therefore 
equation (12) becomes 

a& aeLi dnt 

=+an*.=dt SL Ll 

(24) 

where Qsi and QLi are the dimensionless temperature of 
solid and liquid at the centerpoint of the ith element, 
respectively, nz and n& are the two normals at the 
centerpoint of the ith element of solid and liquid, 

respectively, and n: is the unit normal of the 
centerpoint of the ith element of the interface. 

Computations 
Due to the symmetry of the problem with respect to 

the y-axis, half of the domain is sufficient for the 

discretization. This will clearly decrease the 
computation time by a factor of approximately 2. To 
avoid the effect of the pipe on the far field solution, 
point A in Fig. 4, the starting node is chosen at least 30 

pipe radii from the origin. The straight line part of the 
boundary, the interface boundary and the semi- 
circular boundaries are each subdivided into 12 
unequal meshes. After a few numerical calculations, it 

. 
Y, 30R 

13 1 “a 1A 

x 

solid - s 

liquid-L 1 

FIG. 4. Elements arrangement. 
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was found that 12 meshes on each side of the boundary 
are an adequate number of meshes for good accuracy 
and computing efficiency. The dimensions and the 
boundary elements are depicted in Fig. 4. The moving 
velocity for each mesh, which is found by (24) is used to 
determine the new location of the nodes on the 
interface. For better accuracy, however, as the change 
in curvature of the interface becomes larger, the nodes 
are slightly rearranged and the length of the boundary 
elements are changed to represent a more accurate 
interface movement. 

To start the numerical computation Neumann’s 
solution [24] is used to generate a thin solid-phase 
region and to estimate the first step of the interface 
motion. 

The thickness of the starting solid phase generated 
by Neumann’s solution is so small (lo-’ x R) that the 
boundary integral equation is not suitable for the solid 
region. This is due to the fact that the solution of the 
bouuda~ integral equation is not su~cientiy accurate 
for very thin regions that have thickness of the order of 
10W2 x (element length). Therefore, for the next few 
time steps, we adapt a quasi-linear temperature 
dist~bution in the solid region until the thickness of 
the region reaches the order of IO-“. Thus the normal 
derivative of the temperature of the solid region at the 
interface can be written as 

aT,l_x’) To-T 1 
=- 

Jr&(x’) 
.- 

Yi JGjd$X~i)2 
(25) 

_ 

and the nondimensionaliz~ form is given by 

where ,x’ = (xi, yi). 

RESULTS 

The transient interface location for freezing around 
a pipe buried at a distance h* = -3 below a free 
surface is shown in Fig. 5. The interface commences at 
the surface, which is maintained at 8, = - 1, and 
proceeds towards the pipe. In the region directly above 
the pipe the interface moves rapidly towards its steady 
state while it continues to undergo significant 
development elsewhere. At 7 = q, = 402.9 the 
interface intersects the vertical line of symmetry and 
forms a closed loop around the pipe. Subs~uently two 
fronts are formed: a cyhndrica1 interface which 
encloses the pipe and moves towards it, and a curved 
interface which progresses away from the pipe. At 
steady state (not shown) the former becomes circular 
while the latter planar. In Fig. 5 the numerical 
computation is terminated at r = TV. However, 
extension of the solution for t > ‘Ed does not present 
any conceptual di~iculties. These features are 
preserved when the surface temperature is lowered to 
0, = -4 as shown in Fig. 5. The interface for this case 
progresses much more rapidly than that for @a = - 1, 
intersecting the vertical axis below the pipe at 
r0 = 22.08. The variation of r0 with the dimensionless 
surface temperature for h* = -3 is shown in Fig. 7. 
The effect of pipe depth h* on TV for 0, = - 1 and 
B0 = -4 is presented in Fig. 8. As might be expected 
an increase in the pipe depth h* results in an increase in 
the time required for the interface to enclose the pipe. 

Turning now to the behavior of the interface in the 
region directly above the pipe, we examine the time 
needed for the interface to approach its steady-state 
position. Since steady state is reached asymptotically 
as t + 35, we arbitrarily definer, as the dimensionless 
time required for the interface to reach 90% of its 
steady-state position above the pipe at x = 0. Defining 

FIG. 5. Interface motion, B. = - 1, h* = -3 
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FIG. 6. Interface motion, &, = -4, h* = -3. 

h’=-3 

5 10 50 100 500 

TO 

Surface temperature effect on the time for the interface to enclose pipe. 

FIG. 8. Pipe depth and surface temperature effect on time needed for the interface to enclose pipe. 

6(r) as the interface location at x = 0 and 6( co) as the 
steady-state location, it follows that 7s is the 
dimensionless timecorresponding to &t,)/?i(a) = 0.9. 
The effect of 6, on 7, is shown in Fig. 9 for h* = - 3. 
Here we note a significant drop in 7, as the 
dimensionless surface temperature B0 is decreased. 
The effect of pipe depth on 7s is illustrated in Fig. 10 for 
tIO = - 1 and -4. 

Discussion 
The accuracy of the solution was examined with 

regard to the number and size of elements as well as the 
extent of the integration domain. Each of the three 
boundaries shown in Fig. 4, the planar surface, 
interface and pipe surface, was divided into unequal 
meshes. The results presented in Figs. S-10 are based 
on a network of 12 elements for each boundary. 
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FIG. 9. Surface temperature effect on time needed for the interface to reach 90y0 of its steady-state location 
above the pipe. 

0 50 100 150 200 250 

-hi 

0 2 4 6 6 10 

TS 

FIG. 10. Effect of pipe depth on time needed for the interface to reach 90:< of its steady-state location above 
the pipe. 

Increasing the number of elements to 18 and 24 was 
found to increase computational time by a factor of 
two and four, respectively but did not change the 
results sufficiently to justify increasing the number of 
elements beyond 12. On the other hand, decreasing the 
number of elements to eight or less led to an 
unacceptable result. For the free surface and the 
interface, the size of the elements close to the y-axis 
was made smaller than those far away. Furthermore, 
since the interface curves as it moves, care was taken to 
use small size elements along the interface where the 
curvature is large. Another factor which affects the 
solution is the extent of the integration domain in the 
x-direction as defined by location A in Fig. 4. Based on 
several numerical calculations it was found that if the 
location of A is increased beyond 30 pipe radii from 
the vertical axis, little change in the results will be 
observed. On the other hand a distance of 20 pipe radii 
was found to give unacceptable results. 

The computational time was found to be dependent 
on the surface temperature 0,. For 0, = - 1, 408 s 
on the IBM 3033 were needed for the interface to 

envelope the pipe. The corresponding time for 
09 = -4 is 33 s. 

The solution far away from the pipe was compared 
with the quasi-steady, one-dimensional analytic 

solution to Neumann’s problem. Good agreement was 
observed for the cases presented in Figs. 5 and 6. 
However, when the effect of sensible heat is taken into 
consideration the interface position given by 
Neumann’s solution was found to lag behind the 
quasi-steady solution. It is therefore expected that the 
quasi-steady approximation results in an overestimate 
of the interface advance for the two-dimensional 
problem considered. 

The use of the boundary integral method to solve 
two-dimensional phase-change problems as illus- 
trated by the buried pipe example with the interface 
commencing at the free surface can be easily used to 
treat the corresponding problem where the interface 
starts at the pipe surface. 
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TECHNIQUE DE L’EQUATION INTEGRALE DE LIMITE AVEC APPLICATION 
AU GEL AUTOUR D’UN TUBE ENTERRE 

R&sum&On considtre l’utilisation de la mithode de I’tquation intCgrale de limite (BIEM) pour des 
probltmes multidimensionnels avec interface mobile entre phases. La mCthode est trouvte adapt&e aux 
probltmes de transfert thermique dans lesquels les kquations de champ sont linkaires dans chaque rtgion 
et les conditions aux limites ou ti I’interface sont i la fois fortement mobile, la technique BIE rtduit d’une 
uniti les dimensions du probltme, ce qui diminue les optrations de mise en m&moire, et elle r&out 
directement pour le gradient de temptrature normal inconnu de chaque cot& de I’interface et pour la vitesse 
instantanke de I’interface. Pour illustrer la souplesse de cette technique la mkthode IEM est appliqute & un 
problPme actuellement non rCsolu: la fusion ou le gel autour d’un tube enterri. dans un domaine semi- 
infini oli la fusion ou gel sont init& g la surface libre et oti le milieu n’est pas initialement g la tempkrature 
de changement de phase. Pour simplifier on suppose une conduction thermique stationnaire dans les deux 

zones. Des solutions sont pr&.ent&es pour plusieurs valeurs des paramttres actifs. 

ANWENDUNG DER GRENZ-INTEGRAL-GLEICHUNGS-METHODE AUF 
GEFRIERVORGANGE UM EIN EINGEGRABENES ROHR 

Zusammenfassung-In dieser Arbeit wird die Anwendung der Grenz-Integral-Gleichungs-Methode (BIEM) 
auf mehrdimensionale Probleme mit variabler Phasengrenzflgche untersucht. Es zigt sich, daD die Methode 
fiir Wlrmetransportprobleme geeignet ist, bei denen die Gleichungen in jedem Gebeit linear sind, die 
Rand- oder PhasengrenzflLhenbedingungen jedoch in hohem MaDe ungleichmgl3ig und nichtlinear sein 
diirfen. Fiir Probleme mit beweglicher Phasengrenzflache reduziert BIEM einerseits den Grad des Problems 
urn Eins, wodurch weniger Speicherplatz benotigt wird; das Verfahren ermittelt andererseits fiir beide 
Seiten der PhasengrenzflPche den unbekannten Temperaturgradienten in Normalen-Richtung, der zur 
Bestimmung der Momentan-Geschwindigkeit der Phasengrenzfliche verwendet wird. Urn die Vielseitigkeit 
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des Verfahrens zu demonstrieren, wird BIEM auf ein bisher ungeltistes Problem angewandt : Den Schmelz- 
und Gefriervorgang urn ein eingegrabenes Rohr in einer haibunendlichen Umgebung, bei dem das 
Schmelzen bzw. Gefrieren an der freien Oberflkhe eingeleitet wird und das Medium anfangs nicht 
auf Phasenwechseitem~ratur ist. Der Einfachheit halber wird quasistationiire Wkmeleitung in der 
ungefrorenen und gefrorenen Zone angenommen. Es werden Ergebnisse fiir die verschiedenen Haupt- 

parameter des Problems vorgestellt. 

~C~O~b3OBAH~E METOjjA rPAH~~HOr0 ~HTErP~bHOrO YPABHEH~~ fiJIX 
OIIHCAHMR l7POqECCA 3AME~AH~~ CPEjJbI BOKPYI- ~OrP~EHHO~ TPYPbI 

k"OT4U,,,+-&iC~OJIb3yeTCKMeTO~~pWWHOrOHHTe~pW,bHOrO ypaBHeHHJlQnK~IlleH&iI MHOrOMepHbIX 

3anay c ~OABH*H~~~ rpaHHuefi pa3nena @a3.rIoKa3ano,5To MeTon ~oxwo ncnonb308aTbanfl peureHnn 

3aaav Tennonepenoca, Korna ypaaiiewK WK nonei IIBJIKIOTCR nHHeiiHarMa B Karnoii H3 ot?nacreii, a 

l-pa!iWiHbIe yCJIOBEiff, WJIW yCJlOBHI COnpSKeHHR I&3, RBJIREOTCK KBK HeperyJlKpHbIhfn, TBK W HeJItiHefi- 

HMMA, &IX 3ajWi C nO~BnZKtaOk @83OBOii rpaHSfue@ ~~arae~~ MeTOn n03BOJIKeT KaK COKpaTWTb 

pa3MepHocrb 3a,uaw Ha o~ye~Hnuy,q~o yMeHbnxaeT 06z.e~ Heo6xo~Mo~ ~~~~e~~ m@opMa- 
mm, TaK w nolrytt~~b npnMoe pemeiine anr 5ien3neCFnoro TehmepaTypnoro rpamietiTa no nop~a.rni c 
KaXUlOii CrOpOHbI rpaHHub1 pa3neJIa .DJU Onpe~eJIeHnK Ha Heii TeKyUrerO 3Ha'leHWII CKOPOCTH. &TK 

wunocTpaunsi so3bforHocrei MeTona AaH peIlrensie panee Hepemennoii sanaw: TanHne/3aMep3arise 

CpeAbI BOKpyT Tpy6bI,nOrpyXCeHHOti B nOJIy6eCKOHe%IyK, OtiJIaCTb,KOrAa IlpOueCC HaYHHaeTCIl Ha CBO- 

60~1~0fi nok3epxwcTH H TehfnepaTypa Cpenb~ BHaqa_ne 0TnavHa OT TeMnepaTypbI aa30Boro nepexoaa. 

_I$03 ynpoureHan 3axal[ara AenaeTcK npennonoxceHsie 0 Ksa3n-crawoHapnoh4 xapaKTepe npoueCCa Ten- 

~O~~BOAH~~ KaK B pacrarrameii, TaK s n 3aMep3nd 3oHax. Pexnemia fianbIzw4 prunawrbrx 3riaYe- 


