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Abstract—In this paper the use of the boundary integral equation method (BIEM) for multidimensional
problems with a moving phase-change interface is explored. The method is shown to be suited to heat
transfer problems where the field equations are linear in each region and the boundary or interface matching
conditions are both highly irregular and non-linear. For moving interface problems the BIE technique both
reduces the dimensions of the problem by one, thus decreasing storage requirements, and directly solves for
the unknown normal temperature gradient on each side of the interface for the determination of the
instantaneous interface velocity. To illustrate the versatility of this technique the BIEM is applied to a
previously unsolved problem: the melting/freezing around a pipe buried in a semi-infinite domain where the
melting/freezing is initiated at the free surface and the medium is initially not at the phase-change temperature.
For simplicity quasi-steady heat conduction is assumed in both the thawed and frozen zones.
Solutions are presented for various values of the governing parameters.

INTRODUCTION

EXISTING numerical solutions of two-dimensional
heat conduction problems with a moving phase-
change interface have traditionally been treated using
finite-difference or finite-element methods. These
techniques are very time consuming, even with the
latest generation of computers, since they require a
coupling of the solution for the entire temperature field
in the liquid and solid regions with a non-linear energy
interface condition at each time increment. The
extension of these techniques to three-dimensional
problems or problems with embedded fluid-carrying
tubes, coupling the heat transfer between the internal
fluid and the surrounding phase-change medium,
would be extremely costly. In the present paper a new
numerical solution procedure is examined for moving
phase-change boundary problems in heat transfer
based on the boundary integral equation technique.
The method has been extensively used in the mechan-
ics of solids where one wishes to determine the quasi-
steady stress distribution in the vicinity of a fracture tip
[1-3] and more recently in low Reynolds number flow
problems with deformable fluid—fluid interfaces [4-6].
The present paper will demonstrate the feasibility of
the technique for heat transfer problems in two-
dimensions where a quasi-steady approximation is
assumed for the temperature distribution in both the
liquid and solid regions. The method is currently being
extended to three-dimensional problems involving
buried tubes with axial thermal interaction and fully
transient problems using a time-dependent Green’s
function.

The two fundamental simplifying features of the
boundary integral equation approach that make it
especially attractive for heat transfer problems with a

moving phase-change interface are: (1) the number of
dimensions over which an unknown temperature or its
normal gradient must be determined are reduced by
one since these unknown distributions need be
determined only over the boundaries of each region
instead of the areas; and (2) the numerical solution
procedure directly provides the unknown normal
temperature gradient on each side of the moving
interface. This second feature is extremely convenient
in the present heat transfer application since the
energy interface condition for the instantaneous
velocity of the interface involves only the difference in
the normal temperature gradients across this surface.
The theory for the boundary integral equation
approach derives from the conditions of uniqueness
for the governing field equations in each region. The
solution procedure can be easily applied provided
these field equations are linear and possess a relatively
simple closed-form fundamental solution which
satisfies appropriate boundedness conditions at
infinity. Subject to additional constraints of boundary
smoothness, these conditions are normally satisfied
for both two- and three-dimensional, steady and
unsteady heat conduction problems. The new solution
approach will be illustrated for the classic problem of a
buried pipe in a semi-infinite domain where the
freezing/melting is initiated at the planar free surface.
This problem has been selected since its solution has
not previously appeared in the literature and the
dramatic changes in interface shape that evolve as the
phase-change boundary gradually wraps around the
tube provide a severe test of the flexibility of the
solution methodology for handling interfaces of highly
irregular shape.

While the boundary integral equation technique has
been extensively used in solid mechanics and flow
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element

H coefficient matrix of f

h depth of the center of the pipe

K thermal conductivity

k coefficient matrix of g

l latent heat

n(x) outward unit normal at x

g total number of elements

T distance between the centerpoints of

the ith and jth elements

r(x,&) distance between the two points x
©7  and ¢ )

R pipe radius

S coordinate along the boundary

AS length of the boundary element

T temperature

T, free surface temperature

T pipe temperature

t time

v, normal interface velocity

X,y Cartesian coordinates

x coordinates of a point (x, y).

NOMENCLATURE

b depth of bypass contour Greek symbols
D domain o angle between normal and x-axis
oD, part of boundary where 6 is defined Y dimensionless coordinate of an
oD, part of boundary where 96/dn is element

defined v? Laplacian operator
fix! function of boundary values at x’ é delta function
@) function of boundary values at 13 £ infinitesimal radius of sphere
fi,f» values of f at the two nodes of an {,,{, interpolation functions

element n coordinate of &
G the Green’s function B(x) dimensionless temperature function
g(x)  function of boundary values at x’ . of x
g(®) function of boundary values at & f8,(x) dimensionless temperature function of
d1,g, values of g at the two nodes of an - the free surface

R, boundary of the interface.
Superscripts

* dimensionless

! boundary points.
Subscripts

s solid

L liquid

- coordinates of the points

i ith boundary element or initial

condition
j jth boundary element.

4 moving boundary point (&, )

I3 coordinate of ¢

p mass density

T dimensionless time

T, dimensionless time required for the
interface to intersect the y-axis
dimensionless time required for the
interface to reach 90 %, of its steady-
state position above the pipe

Q region of solid or liquid

oQ boundary of the solid or liquid region

problems [7, 8], these applications for the most part
have been either steady or quasi-steady in nature
where one wishes to determine an unknown quasi-
steady stress or velocity distribution at the boundaries.
In the present situation the solution is required of a
non-linear, time-dependent initial value problem in
which only the energy matching condition between
regions is non-linear. This type of problem is much
easier to treat than a moving boundary value problem
in which the governing field equations are non-linear.
Even with this simplification the success of the method
is limited by the rapidity with which the unknown
boundary functions can be evaluated in each time
interval. For interfaces undergoing large amplitude
deformations, as is the present case, the temporal
evolvement of the interface may involve a thousand or
more time increments. The time-dependent
applications of the boundary integral equation
technique, which first attracted the authors’ attention

and suggested the feasibility of this approach for heat
transfer applications, were the recent numerical
studies of Lee and Leal {5, 6] for the motion of a solid
sphere through a deformable fluid—fluid interface. This
application from the chemical engineering literature
exhibited several of the same essential features of the
class of heat transfer problems considered herein:
linear field equations in each region, a non-linear
matching interface condition and a large amplitude
deformation of this interface as time evolves.

HEAT TRANSFER BACKGROUND

Investigators studying the transient behavior of
phase-change material (PCM) outside an embedded
circular tube have commonly simplified the problem
by assuming the PCM to be infinite in extent. With
this approximation the problem becomes one-
dimensional and its mathematical treatment is
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FiG. 1. Schematic of freezing around a buried pipe.

considerably simplified. An important exception
where a bounded domain is treated is a tube buried in
the vicinity of a planar boundary as shown in Fig. 1.
The presence of the planar surface results in a two-
dimensional solid-liquid interface motion. Two
different cases are identified with this geometry. In the
first case the interface commences at the planar surface
due to a sudden change in surface conditions and
progresses inwards through the PCM while in the
second case the interface begins at the pipe surface due
to a change in pipe inlet conditions and moves
outwards. Thus the initial shape of the interface for the
first case is planar while that for the second is
cylindrical. Because of the non-linearity of the
interface energy equation these two initial value
problems are mathematically distinct, having two
different solutions. However, they share a common
well-known steady-state solution characterized by a
circular interface [9] which is eccentrically located
about the pipe. To our knowledge the first case, which
finds applications in solar collectors, ground freezing
and cryoprobe skin treatment in the vicinity of a major
blood vessel, has not been treated in the published
literature. However, Lunardini [10] recently
addressed this case and presented an approximate
analytic model for the initial stages of this problem.
Applications to buried gas and oil pipes in permafrost
have generated considerable interest in the second
case. Of importance here is the determination of the
outward advance of the thaw front around a warm
pipe. Numerical solutions based on variational and
finite-element methods to the problem of transient,
two-dimensional melting outside a buried pipe at
uniform surface temperature have been obtained for
various planar surface boundary conditions by
Lachenbruch [ 11], Gold er al. [12], Wheeler [13] and
Hwang [ 14]. Because these solutions are expensive to
generate, several investigators have obtained various
approximate analytic solutions to both insulated and
bare buried pipes [15-23]. Without exception, all
these two-dimensional analytic solutions are based on
a simplified quasi-steady approximation in which the
transient term in the heat conduction equation is
neglected in both phases. This is a wvalid
approximation when the latent heat of the PCM is
large compared to the sensible heat (i.e. small Stefan
number).

In this paper we examine the first case where the
interface commences at the planar surface. The semi-
infinite PCM is assumed to be initially at uniform
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temperature T, which is above its melting temperature
T;.. The planar surface temperature of the PCM is
suddenly changed to T, where T, < T; < T.. A tube of
radius R and surface temperature T, is buried a
distance h below the planar surface,

Mathematical formulation

In the problem described above and illustrated in
Fig. 1 the solid domain is defined by Q, with its
boundaries described by 8Q, (free surface} and Q)
(interface). The liquid domain is defined by Q, with its
boundaries described by dQ, (pipe surface) and Q.
The governing differential equation for quasi-steady
two-dimensional conduction are

VT(x) =0, VxeQ (1a)
VT (x) =0, VxeQ (1b)

where T, and T, are the temperatures of the solid and
liquid regions respectively, V? is the Laplacian
operator and x = (x, y}. The boundary conditions are

7;(36, =T, Vgc' €0Q, (2a)
T, =T, ¥xedQ (2b)
and
Tx.0=T, Vxe 00 (3a)
Lx,)=T, VX' edl. (3b)
The energy balance at the interface requires
OT) . OTY)

) Ky = ) VxR @
where n(x') is the outward normal coordinate at the
interface, K, and K, are the thermal conductivity of
solid and liquid, respectively, p is the mass density, ! is
the latent heat and v,(x')} = dn(x'}/dt is the interface
velocity of x' in the normal direction.

To non-dimensionalize the problem the following
dimensionless variables are introduced:

_KT®-T
JER o)
T(x)—T;

() = D ©

iTAr

_ h _ n(x} _x

e, 9 ="2, x=% )

K(G-T)
T = Ripl t 8)

where ¢ is time and t is the dimensionless time.

The dimensionless form of the governing equations,
the boundary conditions and the energy balance at the
interface are:

Vzﬂs(zc) =0, VxeQ, (9a)
Vi, (x) =0, VxeQ (9b)
9,=6, onoQ, (10a)
8,=0 on dQ (10b)
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0.=0 on o (11a)
6.=1 on?dQ (11b)
and
06,(x") 06.(x') _ dn¥(x') R
- = "€ dQ) 12
i) amti) e ¥R ()

where 6, = K(T, — T)/K (T, - T).

The governing equations and boundary conditions
show that the physical problem just described is
completely defined by only two dimensionless groups
if the sensible heat of the liquid and solid phases are
neglected compared to the heat of fusion: a geometric
parameter h* = h/R and a temperature ratio 6,. We
wish to examine the behavior of the interface as these
two parameters are varied.

THE BOUNDARY INTEGRAL EQUATION

For a general, two- or three-dimensional problem,
let u(x) be the solution of the harmonic equation

V20(3c) =0, x=D

subject to the boundary conditions

(13)

0(x) = f(x), Vx'edD, (14)
60(x) oA
6n(3c) =g(x), Vx'edD, (15)

where f and g are specified boundary values and
0D = 6D, +0D,. Let G(x,¢) be the Green’s function,
i.e. the solution of VZG(x f) = 6(x 9 where d is the
delta function. Employing the Green’s second identity,
which is

f [0G)V2G(x. £)—G(x. H)V26(x)] dD

B oG
- j 00 T 6o @)} as) (16)
D (’;) )
one can readily arrive at
( 0G(x,
B(x) = [f@)—(ﬁi —9(5)G(x, g)] ds(&). (17)
Jép an(g)

Let x approach a boundary point X', then equation
(17) becomes

9G(x',¢)

e ©

£y = f s 69

- f gOGK.HASE).  (18)

éb
As ¢ approaches x', the first integral on the LHS of
equ~ation (18) becomes singular. However, this
singularity is avoided by following a different path
such as a small spherical region of radius ¢ about the
singular point, i.e. x' = &, Fig. 2. Taking the limit as
¢ — 0, the integral exhibits a jump of f (5’)/2. Equation

F1G. 2. Alternative path when x' = ¢.

(18) becomes
1)+ f G(x'.£)g(&) dS(E)
D

L 0G(X',E)
AL )
Depending upon the first or the second boundary
condition, (19) becomes the standard Fredholm
equation of the first or the second kind, respectively.
Once f and g at any point are known, the solution at
any point in the domain will be obtained from
equation (17). For the two-dimensional problem
considered here, the Green’s function is G(x',&)
(1/21:) Inr(x', ), where r denotes the distance of
point x’ from the point ¢. Therefore, as £ approaches
x', the integral on the UHS of (19) becomes singular.
To avoid the singularity we make the assumption that
g(¢) is constant over a small interval AS of the
boundary and integrate over the path shown in Fig. 3.
Taking the limit as b approaches zero, equation (19)
can be written as:

(19)

lf(x’)~l—ig(x’)AS In AS -1

2 g I 2
1
. ¢() In r(x',£) dS(E)
e

“nf o] e
m Joox e
S si ~>]dS(§) (20)

F1G. 3. The integration contour.
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where ZC( = (xvy)’ § = (C’ r’)’ r’= (X—§)2+(y‘—i’])2
and «(¢) is the angle between the outward normal and
x axis at the boundary point.

To obtain a numerical solution to (20) we subdivide
the boundary éD into N+ 1 nodes and N discrete
intervals, boundary elements, AS; (i = 1,...,N). The
intervals can be considered as constant, linear,
quadratic or higher-order boundary elements. Clearly
the shape function will be different for each type of
element. For a constant element, f(x') and g(x’) are
constant over each interval and can be taken out of the
integrals. Therefore, equation (20) leads to

1 AS; 1 &
—g;AS( In|—=|-1}+— Inr; dS; |g;
27'Cgl |<n‘ 2 > 27_[];1 [fASj Ili‘u SJ:]gJ
j#i
1 1§
= Mg X

(xi—xj)(xj—xﬁ1)+(yi—}’j)()’j+1 =)
r2ASj

de] £

@

s

In the above equation the subscripts i and j represent
the value at the mid-point of the intervals and (x;, y;)
and (x;, y;) denote the coordinates of the points Zc’ and
&, respectively.

" For a linear boundary element the values of f(x’)
and g(x’) at any point on the element can be definedin
terms  of their nodal values and two linear
interpolation functions {; and {,

JG)=0A+000
g») = {191 +{29:

where f,g, and f;, g, are the boundary values of two
nodes of an element, dimensionless coordinate y is
equal to x'/(AS/2), AS is the length of the element and
the {,,{, functions are given by

P

L=31=-y, = 3(1+9).

Therefore each integral of equation (20) will have two
parts associated with the interpolation functions {,
and {,. In either case (20) and /or (21) can be written in
the following matrix form

[Kij]{gi} = [Hij]{ﬁ} = {Fi}

where [K;;] is an N x N matrix whose elements
contain the boundary integral of the Green’s function,
{g;} i1s an N x 1 vector whose clements contain the
unknown normal derivative of the dimensionless
temperature 06/0n, [H;;] is an N x N matrix whose
elements contain the coefficient of dimensionless
temperature and { f;} is an N x 1 vector whose clements
contain the known value of the dimensionless
temperature. The RHS is known and is denoted by
{F.;}. Once equation (22) is solved for the vector {g,},
the temperature at any point in the domain x = (x, y)

22)

HMT 30:2-B

is given by

1 N
0x) == %

=1

_(x_éi)(éi_§i+1)+(y_ni)('7j+1
AS; r*(x, £)AS;

1 N

_’7,') dsi:l
fi_z_ >

[j In r(x, ;) dsijlgi (23)
Ti=1LJas,

where &, = (&,,n,) is a boundary point at subdivision i.
In order to determine the velocity and the position of
the interface, equation (22) is first solved for the solid
and liquid regions shown in Fig. 1. The energy
equation (12) is then used to determine #* which leads
to the determination of the velocity and the position of
the interface. The traveling direction and the direction
of the outward unit normal n* on the boundaries of the
solid and liquid regions are defined in Fig. 4. As shown
in Fig. 4 the outward unit normals at the interface of
the two regions are in opposite directions, therefore
equation (12) becomes

0, 00, dn}
on% on¥,  dt

(24)

where 6; and 6, are the dimensionless temperature of
solid and liquid at the centerpoint of the ith element,
respectively, n¥ and nf; are the two normals at the
centerpoint of the ith element of solid and liquid,
respectively, and n¥ is the unit normal of the
centerpoint of the ith element of the interface.

Computations

Due to the symmetry of the problem with respect to
the y-axis, half of the domain is sufficient for the
discretization. This will clearly decrease the
computation time by a factor of approximately 2. To
avoid the effect of the pipe on the far field solution,
point A in Fig. 4, the starting node is chosen at least 30
pipe radii from the origin. The straight line part of the
boundary, the interface boundary and the semi-
circular boundaries are each subdivided into 12
unequal meshes. After a few numerical calculations, it

Y 30R

liquid- L

F1G. 4. Elements arrangement.
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was found that 12 meshes on each side of the boundary
are an adequate number of meshes for good accuracy
and computing efficiency. The dimensions and the
boundary elements are depicted in Fig. 4. The moving
velocity for each mesh, which is found by (24)is used to
determine the new location of the nodes on the
interface. For better accuracy, however, as the change
in curvature of the interface becomes larger, the nodes
are slightly rearranged and the length of the boundary
elements are changed to represent a more accurate
interface movement. ‘

To start the numerical computation Neumann’s
solution [24] is used to generate a thin solid-phase
region and to estimate the first step of the interface
motion.

The thickness of the starting solid phase generated
by Neumann'’s solution is so small (10~ 2 x R) that the
boundary integral equation is not suitable for the solid
region. This is due to the fact that the solution of the
boundary integral equation is not sufficiently accurate
for very thin regions that have thickness of the order of
10~ % x (element length). Therefore, for the next few
time steps, we adapt a quasi-linear temperature
distribution in the solid region until the thickness of
the region reaches the order of 1071, Thus the normal
derivative of the temperature of the solid region at the
interface can be written as

) _To-T 1

wO " ey
and the nondimensionalized form is given by
904x'} = X (T" — Tf) R 1 (26)
onx) K \T-T)% /T3 @ydx)

where X' = (x;, y;).

A. M. SADEGH et al.

RESULTS

The transient interface location for freezing around
a pipe buried at a distance h* = —3 below a free
surface is shown in Fig. 5. The interface commences at
the surface, which is maintained at 8, = —1, and
proceeds towards the pipe. In the region directly above
the pipe the interface moves rapidly towards its steady
state while it continues to undergo significant
development elsewhere. At t=1,=4029 the
interface intersects the vertical line of symmetry and
forms a closed loop around the pipe. Subsequently two
fronts are formed: a cylindrical interface which
encloses the pipe and moves towards it, and a curved
interface which progresses away from the pipe. At
steady state {(not shown) the former becomes circular
while the latter planar. In Fig. 5 the numerical
computation is terminated at t =1, However,
extension of the solution for 7 > 7, does not present
any conceptual difficulties. These features are
preserved when the surface temperature is lowered to
8, = —4 as shown in Fig. 6. The interface for this case
progresses much more rapidly than that for 8, = ~1,
intersecting the vertical axis below the pipe at
1o = 22.08. The variation of 7, with the dimensionless
surface temperature for h* = —3 is shown in Fig. 7.
The effect of pipe depth h* on 1, for 8, = —1 and
0, = —4 is presented in Fig. 8. As might be expected
an increase in the pipe depth h* results in an increase in
the time required for the interface to enclose the pipe.

Tuming now to the behavior of the interface in the
region directly above the pipe, we examine the time
needed for the interface to approach its steady-state
position. Since steady state is reached asymptotically
as t — oo, we arbitrarily define , as the dimensionless
time required for the interface to reach 909 of its
steady-state position above the pipe at x = 0. Defining

30 X

n¥=-3
Bp=-1

Fic. 5. Interface motion, 8, = —1, h* = —3.
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Fi1G. 6. Interface motion, 6, = —4, h* = —3.
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F1G. 7. Surface temperature effect on the time for the interface to enclose pipe.
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F1G. 8. Pipe depth and surface temperature effect on time needed for the interface to enclose pipe.

d(7) as the interface location at x = 0 and d(o0) as the
steady-state location, it follows that t, is the
dimensionless time corresponding to &(z,)/d(cc) = 0.9.
The effect of 6, on 1, is shown in Fig. 9 for h* = -3,
Here we note a significant drop in 7, as the
dimensionless surface temperature 8, is decreased.
The effect of pipe depth on 7, is illustrated in Fig. 10 for
6, = —1and —4.

Discussion

The accuracy of the solution was examined with
regard to the number and size of elements as well as the
extent of the integration domain. Each of the three
boundaries shown in Fig. 4, the planar surface,
interface and pipe surface, was divided into unequal
meshes. The results presented in Figs. 5-10 are based
on a network of 12 elements for each boundary.
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50 100

F1G. 9. Surface temperature effect on time needed for the interface to reach 909 of its steady-state location
above the pipe.
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F1G. 10. Effect of pipe depth on time needed for the interface to reach 909 of its steady-state location above
the pipe.

Increasing the number of elements to 18 and 24 was
found to increase computational time by a factor of
two and four, respectively but did not change the
results sufficiently to justify increasing the number of
elements beyond 12. On the other hand, decreasing the
number of elements to eight or less led to an
unacceptable result. For the free surface and the
interface, the size of the elements close to the y-axis
was made smaller than those far away. Furthermore,
since the interface curves as it moves, care was taken to
use small size elements along the interface where the
curvature is large. Another factor which affects the
solution is the extent of the integration domain in the
x-direction as defined by location A in Fig. 4. Based on
several numerical calculations it was found that if the
location of A is increased beyond 30 pipe radii from
the vertical axis, little change in the results will be
observed. On the other hand a distance of 20 pipe radii
was found to give unacceptable results.

The computational time was found to be dependent
on the surface temperature §,. For §, = —1, 408s
on the IBM 3033 were needed for the interface to

envelope the pipe. The corresponding time for
0,= —41s 33s.

The solution far away from the pipe was compared
with the quasi-steady, one-dimensional analytic
solution to Neumann’s problem. Good agreement was
observed for the cases presented in Figs. 5 and 6.
However, when the effect of sensible heat is taken into
consideration the interface position given by
Neumann’s solution was found to lag behind the
quasi-steady solution. It is therefore expected that the
quasi-steady approximation results in an overestimate
of the interface advance for the two-dimensional
problem considered.

The use of the boundary integral method to solve
two-dimensional phase-change problems as illus-
trated by the buried pipe example with the interface
commencing at the free surface can be easily used to
treat the corresponding problem where the interface
starts at the pipe surface.
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TECHNIQUE DE L'EQUATION INTEGRALE DE LIMITE AVEC APPLICATION
AU GEL AUTOUR D’UN TUBE ENTERRE

Résumé—On considére 'utilisation de la méthode de I’équation intégrale de limite (BIEM) pour des
problémes multidimensionnels avec interface mobile entre phases. La méthode est trouvée adaptée aux
problémes de transfert thermique dans lesquels les équations de champ sont linéaires dans chaque région
et les conditions aux limites ou a interface sont a la fois fortement mobile, la technique BIE réduit d’une
unité les dimensions du probléme, ce qui diminue les opérations de mise en mémoire, et elle résout
directement pour le gradient de température normal inconnu de chaque coté de l'interface et pour la vitesse
instantanée de I'interface. Pour illustrer la souplesse de cette technique la méthode IEM est appliquée a un
probléme actuellement non résolu: la fusion ou le gel autour d’un tube enterré dans un domaine semi-
infini ot la fusion ou gel sont initiés a la surface libre et ol le milieu n’est pas initialement a la température
de changement de phase. Pour simplifier on suppose une conduction thermique stationnaire dans les deux
zones. Des solutions sont présentées pour plusieurs valeurs des paramétres actifs.

ANWENDUNG DER GRENZ-INTEGRAL-GLEICHUNGS-METHODE AUF
GEFRIERVORGANGE UM EIN EINGEGRABENES ROHR

Zusammenfassung—In dieser Arbeit wird die Anwendung der Grenz-Integral-Gleichungs-Methode (BIEM)
auf mehrdimensionale Probleme mit variabler Phasengrenzfidche untersucht. Es zigt sich, daB die Methode
fir Warmetransportprobleme geeignet ist, bei denen die Gleichungen in jedem Gebeit linear sind, die
Rand- oder Phasengrenzflichenbedingungen jedoch in hohem MaBe ungleichméBig und nichtlinear sein
diirfen. Fir Probleme mit beweglicher Phasengrenzfliche reduziert BIEM einerseits den Grad des Problems
um Eins, wodurch weniger Speicherplatz bendtigt wird; das Verfahren ermittelt andererseits fiir beide
Seiten der Phasengrenzfliche den unbekannten Temperaturgradienten in Normalen-Richtung, der zur
Bestimmung der Momentan-Geschwindigkeit der Phasengrenzfliche verwendet wird. Um die Vielseitigkeit
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des Verfahrens zu demonstrieren, wird BIEM auf ein bisher ungeldstes Problem angewandt : Den Schmelz-

und Gefriervorgang um ein cingegrabenes Rohr in ciner halbunendlichen Umgebung, bei dem das

Schmeizen bzw. Gefrieren an der freien Oberfliche eingeleitet wird und das Medium anfangs nicht

auf Phasenwechseltemperatur ist. Der Einfachheit halber wird quasistationdre Wirmeleitung in der

ungefrorenen und gefrorenen Zone angenommen. Es werden Ergebnisse fiir die verschiedenen Haupt-
parameter des Problems vorgestelit.

HUCTIONIB3OBAHHE METOJIA TPAHHYHOI'O MHTETPAJIBHOI'O YPABHEHMA 1A
OTUCAHMS TTPOLECCA 3AMEP3AHHSA CPEJIB BOKPYT TMOI'PYXEHHOU TPVEB!

Ansorauas—Hcnonb3yeTcs MeTON I'PAHAYHOTO MHTEIPANTBHOTO YPaBHEHHS 1A PEIUEHHA MHOIOMEPHBIX
3afay ¢ NOABMXHOMN rpannueif pasnena ¢as. [TokasaHo, YTo METOA MOXHO HCIIOAB30BATh WUl PEILEHAA
3a/ay TEWIONepPeHoca, KOraa ypasHeRHs [UIS TNoJielt AB/IAIOTCA NHHEHHBIMH B Kaxpoi u3 obnacreil, a
rPaHHYHBIE YCJIOBHSA, WIIH YCIOBUA conpskeHus ¢a3, ABNAIOTCH KaK HEPEryNSPHBIMM, TAK M HCIHHEH-
anivu, J{s 3azay ¢ noasmwxHON (a3opolf rpaHuueit npexnaraeMsiif METOJ HO3BOJISET KaK COKPATHTH
pPa3MepHOCTD 3a/1a¥H HA OIHY e[MHMIY, YTO yMeHbIuaeT obbeM HeoGxoaumMoi s pemenus nudopma-
LHH, TaK ¥ HDOJY4NTH IPAMOE DELiCHHE AJIA HEH3BECTHOTO TEMIEPaTYPHOIO rpafHeHTa HO HOPMANH C
KaXHOH CTOPOHBI TPaHHibl pasjena I oNpefe/ieHHs Ha Helf TeKymlero 3HaueHus ckopocrtH. [ns
WUTIOCTPALMH BO3MOXKHOCTEH MeTONa JaHO pellleHHe paHee HEPELIEHHOM 3alavyd: TasHWe/3aMep3aHHe
cpenst BOKpYr TpyObl, HOTpyXeHHoH B Moay6GeckoHeuHy1o 061acTh, KOTAa HpoLece HaYHHAETCA Ha CBO-
GoaHOM MOBEPXHOCTH H TEMIIEPATypa CPEObl BHa4alle OTJIMYHA OT TEMNEPATYpHl Ga3oBoro nepexona.
Ins ynpomenus 3anadd AeNAETCH NPEANONOXEHHE O KBA3H-CTANHOHAPHOM XapakTepe Mpouecca Tem-
JIONPOBOAHOCTH KaK B pacTassiuci, Tak ¥ B 3amMep3mueit 30Hax. Pemenns faHbt 018 pasnHYHbIX 3HAYeE-
HAH OCHOBHBIX NAPaMETPOB.



